A STUDY OF A VAN DER POL EQUATION

A. M. MARIN¹, R. D. ORTIZ¹ and J. A. RODRIGUEZ²

¹Faculty of Exact and Natural Sciences University of Cartagena Sede Piedra de Bolivar Avenue of Consulado Cartagena de Indias Bolivar Colombia e-mail: amarinr@unicartagena.edu.co ²Morelia Institute of Technology

Morelia Mexico

Abstract

In this paper, we make a study of a dynamical system on the plane without periodic orbits in a domain on the plane. We use a Gasull's result and Dulac's criterion that give sufficient conditions for the non-existence of periodic orbits of dynamical systems in simply connected regions of the plane.

1. Introduction

It is important to make in differential equations the analysis of the periodic orbits that there are in a system in the plane. Certain systems have no limit cycles. For this should be considered: Bendixson's criteria, indices, invariant lines, and critical points (see [1, 5, 8, 9]). In this paper,

Received July 25, 2013

© 2013 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 34A34, 34C25.

Keywords and phrases: Dulac functions, quasilinear partial differential equations, Bendixson-Dulac criterion.

A. M. MARIN et al.

we are interested in studying a system that have a periodic orbit but in a circular domain of radius one and center in the origin, there is not this limit cycle. We use the criterion of Bendixson-Dulac (see [4]) and paper of Gasull (see [2]).

Theorem 1.1 (Bendixson-Dulac criterion)(see [6]). Let $f_1(x_1, x_2)$, $f_2(x_1, x_2)$, and $h(x_1, x_2)$ be functions C^1 in a simply connected domain $D \subset \mathbb{R}^2$ such that $\frac{\partial(f_1h)}{\partial x_1} + \frac{\partial(f_2h)}{\partial x_2}$ does not change sign in D and vanishes at most on a set of measure zero. Then the system

$$\begin{vmatrix} x_1 &= f_1(x_1, x_2), \\ \dot{x}_2 &= f_2(x_1, x_2), \quad (x_1, x_2) \in D, \end{vmatrix}$$
(1.1)

does not have periodic orbits in D.

According to this criterion, to rule out the existence of periodic orbits of the system (1.1) in a simply connected region D, we need to find a function $h(x_1, x_2)$ that satisfies the conditions of the theorem of Bendixson-Dulac, such function h is called a Dulac function. In Saez and Szanto [7] was constructed Lyapunov functions by using Dulac functions to assure the non-existence of periodic orbits. Our goal is to study a dynamical system on the plane that not have periodic orbits in a circular domain of radius one and center in the origin.

2. Method to Obtain Dulac Functions

A Dulac function for the system (1.1) satisfies the equation:

$$f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h\left(c(x_1, x_2) - \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}\right)\right)$$
(2.1)

(see [6]).

Theorem 2.1 (See [6]). For the system of differential equations (1.1), a solution h of the associated system (2.1) (for some function c which does not change sign and vanishes only on a subset of measure zero) is a Dulac function for (1.1) in any simply connected region A contained in $D \setminus \{h^{-1}(0)\}.$

40

Theorem 2.2 (See [6]). For the system of differential equations (1.1), if (2.1) (for some function c which does not change of sign and subset of measure zero) has a solution h on D such that h does not change sign and vanishes only on a subset of measure zero, then h is a Dulac function for (1.1) on D.

Theorem 2.3 (See [2]). Assume that there exist a real number s and an analytic function h in \mathbb{R}^2 such that

$$f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h\left(c(x_1, x_2) - s\left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}\right)\right),\tag{2.2}$$

does not change sign in an open region $W \subset R^2$ with regular boundary and vanishes only in a null measure Lebesgue set. Then the limit cycles of system (1.1) are either totally contained in $\mathfrak{h}_0 := \{h = 0\}$, or do not intersect \mathfrak{h}_0 . Moreover, the number N of limit cycles that do not intersect \mathfrak{h}_0 satisfies N = 0 if s = 0.

3. Main Result

Theorem 3.1. Let $f(x_1)$, $g(x_1)$ be functions C^1 in a simply connected domain $D = \{h \le 0\} \subset \mathbb{R}^2$, where $h(x_1, x_2) = \psi(x_1) + ax_2^2 + bx_2 + c$, where $\psi(x_1)$ is a function C^1 in \mathbb{R} , $a, b, c \in \mathbb{R}$ with the following conditions $(2ag(x_1) + bf(x_1) - \psi'(x_1))^2 - 8abf(x_1)g(x_1) \le 0$ and $b^2 - 4a$ $(\psi(x_1) + c) \ge 0$. Then the system

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -f(x_1)x_2 - g(x_1), \end{cases}$$
(3.1)

does not have periodic orbits in D.

Proof. Applying Theorem 2.3 to the Liénard system (3.1)(this system has critical points on the axis x_1 and on the zeros of $g(x_1)$). From (2.2), we see functions $f(x_1)$ and $g(x_1)$ and values of s satisfy the equation

A. M. MARIN et al.

$$x_2(h_{x_1}) - (g(x_1) + f(x_1)x_2)(h_{x_2}) = h(c(x_1, x_2) + sf(x_1)),$$
(3.2)

for some $h, c(x_1, x_2)$ with hc does not change of sign (except in a set of measure 0). Obviously, h is a Dulac function in certain cases. We propose (instead of try to solve Equation (3.2)) the function $h = \psi(x_1) + ax_2^2 + bx_2 + c$ for adequate ψ such that h has a closed curve of level 0. When h = 0, we have $x_2 = \frac{-b \pm \sqrt{b^2 - 4a(\psi(x_1) + c)}}{2a}$. Then $b^2 - 4a(\psi(x_1) + c) \ge 0$. We try to find the domain for which the system does not have periodic orbits. We have $h_{x_1} = \psi'(x_1), h_{x_2} = 2ax_2 + b$. So, we have

$$af(x_1)(s+2)x_2^2 + (2ag(x_1) + bf(x_1) + bsf(x_1) - \psi'(x_1))x_2 + bg(x_1) + sf(x_1)c + sf(x_1)\psi,$$
(3.3)

which does not change sign and it vanishes only in a null measure Lebesgue subset. Making s = 0 (this system would not have periodic orbits inside the domain with boundary h = 0), we get that $2af(x_1)x_2^2 + (2ag(x_1) + bf(x_1) - \psi'(x_1))x_2 + bg(x_1)$, which does not change sign and it vanishes only in a null measure Lebesgue subset, if the discriminant is $(2ag(x_1) + bf(x_1) - \psi'(x_1))^2 - 8abf(x_1)g(x_1) \le 0$.

Example 3.2. Consider the following system:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\varepsilon (x_1^2 - 1)x_2 - x_1. \end{cases}$$
(3.4)

Taking $h(x_1, x_2) = x_1^2 + x_2^2 - 1$, we obtain that the associated equation given in (2.2) is $hc(x_1, x_2) = -\varepsilon(x_1^2 - 1)(sx_1^2 + (2 + s)x_2^2 - s)$. Choosing s = 0, we get that $hc(x_1, x_2) = -2\varepsilon(x_1^2 - 1)x_2^2$. So, for $\varepsilon \neq 0$, this function does not change sign and it is zero only at $x_1 = \pm 1$, $x_2 = 0$ in $D = \{x_1^2 + x_2^2 \le 1\}$. The system does not contain periodic orbits in D. By (3.4), we have $\ddot{x}_1 + \varepsilon(x_1^2 - 1)\dot{x}_1 + x_1 = 0$. This equation is generalized by $\ddot{x}_1 + f(x_1)\dot{x}_1 + g(x_1) = 0$. The last equation was studied by Liénard in [3]. This equation models mechanical systems and also it models resistor-inductor-capacitor circuits.

Acknowledgement

The authors express their deep gratitude to CONACYT-México, Programa de Mejoramiento del Profesorado (PROMEP)-México and Universidad de Cartagena for financial support.

References

- I. Bendixson, Sur les curbes definies par des equations differentielles, Acta Math. 24 (1901), 1-88.
- [2] A. Gasull and H. Giacomini, Some applications of the extended Bendixson-Dulac theorem.

http://arxiv.org/abs/1305.3402

- [3] A. Liénard, Étude des oscillations entrenues, Rev. Génerale de l'Électricité 23 (1928), 946-954.
- [4] C. McCluskey and J. Muldowney, Bendixson-Dulac criteria for différence equations, J. Dyn. Diff. Equ. 10 (1998), 567-575.
- [5] L. Perko, Différential Equations and Dynamical Systems, Springer, Berlin, 2006.
- [6] O. Osuna and G. Villaseñor, On the Dulac functions, Qual. Theory Dyn. Syst. 10(1) (2011), 43-49.
- [7] E. Saéz and I. Szánto, On the construction of certain Dulac Function, IEEE Trans. Automat. Control 33(9) (1988), 856.
- [8] L. Stephen, Dynamical Systems with Applications using MAPLE, Birkhäuser, Boston, 2001.
- [9] S. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, 1994.